MongoDB: combina datos de múltiples colecciones en una … ¿cómo?

¿Cómo puedo (en MongoDB) combinar datos de múltiples colecciones en una sola colección?

¿Puedo usar map-reduce y de ser así, cómo?

Agradecería mucho un ejemplo ya que soy un novato.

Aunque no puede hacerlo en tiempo real, puede ejecutar map-reduce varias veces para combinar datos utilizando la opción “reducir” en MongoDB 1.8+ map / reduce (consulte http://www.mongodb.org/ display / DOCS / MapReduce # MapReduce-Outputoptions ). Necesita tener alguna clave en ambas colecciones que puede usar como _id.

Por ejemplo, supongamos que tiene una colección de users y una colección de comments , y desea tener una nueva colección que tenga información demográfica de cada comentario.

Digamos que la colección de users tiene los siguientes campos:

  • _carné de identidad
  • nombre de stack
  • apellido
  • país
  • género
  • años

Y luego la colección de comments tiene los siguientes campos:

  • _carné de identidad
  • identidad de usuario
  • comentario
  • creado

Haría este mapa / reducir:

 var mapUsers, mapComments, reduce; db.users_comments.remove(); // setup sample data - wouldn't actually use this in production db.users.remove(); db.comments.remove(); db.users.save({firstName:"Rich",lastName:"S",gender:"M",country:"CA",age:"18"}); db.users.save({firstName:"Rob",lastName:"M",gender:"M",country:"US",age:"25"}); db.users.save({firstName:"Sarah",lastName:"T",gender:"F",country:"US",age:"13"}); var users = db.users.find(); db.comments.save({userId: users[0]._id, "comment": "Hey, what's up?", created: new ISODate()}); db.comments.save({userId: users[1]._id, "comment": "Not much", created: new ISODate()}); db.comments.save({userId: users[0]._id, "comment": "Cool", created: new ISODate()}); // end sample data setup mapUsers = function() { var values = { country: this.country, gender: this.gender, age: this.age }; emit(this._id, values); }; mapComments = function() { var values = { commentId: this._id, comment: this.comment, created: this.created }; emit(this.userId, values); }; reduce = function(k, values) { var result = {}, commentFields = { "commentId": '', "comment": '', "created": '' }; values.forEach(function(value) { var field; if ("comment" in value) { if (!("comments" in result)) { result.comments = []; } result.comments.push(value); } else if ("comments" in value) { if (!("comments" in result)) { result.comments = []; } result.comments.push.apply(result.comments, value.comments); } for (field in value) { if (value.hasOwnProperty(field) && !(field in commentFields)) { result[field] = value[field]; } } }); return result; }; db.users.mapReduce(mapUsers, reduce, {"out": {"reduce": "users_comments"}}); db.comments.mapReduce(mapComments, reduce, {"out": {"reduce": "users_comments"}}); db.users_comments.find().pretty(); // see the resulting collection 

En este punto, tendrá una nueva colección llamada users_comments que contiene los datos combinados y ahora puede usar eso. Todas estas colecciones reducidas tienen _id que es la clave que emite en las funciones del mapa y luego todos los valores son un subobjeto dentro de la clave de value ; los valores no están en el nivel superior de estos documentos reducidos.

Este es un ejemplo algo simple. Puede repetir esto con más colecciones tanto como desee para seguir creando la colección reducida. También podría hacer resúmenes y agregaciones de datos en el proceso. Es probable que defina más de una función de reducción a medida que la lógica para agregar y preservar los campos existentes se vuelve más compleja.

También notará que ahora hay un documento para cada usuario con todos los comentarios de ese usuario en una matriz. Si fusionáramos datos que tienen una relación de uno a uno en lugar de uno a muchos, sería plano y simplemente podría usar una función de reducción como esta:

 reduce = function(k, values) { var result = {}; values.forEach(function(value) { var field; for (field in value) { if (value.hasOwnProperty(field)) { result[field] = value[field]; } } }); return result; }; 

Si desea aplanar la colección users_comments para que sea un documento por comentario, ejecute además esto:

 var map, reduce; map = function() { var debug = function(value) { var field; for (field in value) { print(field + ": " + value[field]); } }; debug(this); var that = this; if ("comments" in this.value) { this.value.comments.forEach(function(value) { emit(value.commentId, { userId: that._id, country: that.value.country, age: that.value.age, comment: value.comment, created: value.created, }); }); } }; reduce = function(k, values) { var result = {}; values.forEach(function(value) { var field; for (field in value) { if (value.hasOwnProperty(field)) { result[field] = value[field]; } } }); return result; }; db.users_comments.mapReduce(map, reduce, {"out": "comments_with_demographics"}); 

Esta técnica definitivamente no debe realizarse sobre la marcha. Es adecuado para un trabajo cron o algo así que actualiza periódicamente los datos fusionados. Probablemente desee ejecutar ensureIndex en la nueva colección para asegurarse de que las consultas que realice se ejecuten rápidamente (tenga en cuenta que sus datos aún se encuentran dentro de una clave de value , por lo que si indexara comments_with_demographics en el tiempo de comentario created , sería db.comments_with_demographics.ensureIndex({"value.created": 1});

MongoDB 3.2 ahora permite combinar datos de múltiples colecciones en una a través de la etapa de agregación de $ $ . Como ejemplo práctico, digamos que tiene datos sobre libros divididos en dos colecciones diferentes.

Primera colección, llamada books , con los siguientes datos:

 { "isbn": "978-3-16-148410-0", "title": "Some cool book", "author": "John Doe" } { "isbn": "978-3-16-148999-9", "title": "Another awesome book", "author": "Jane Roe" } 

Y la segunda colección, llamada books_selling_data , que tiene los siguientes datos:

 { "_id": ObjectId("56e31bcf76cdf52e541d9d26"), "isbn": "978-3-16-148410-0", "copies_sold": 12500 } { "_id": ObjectId("56e31ce076cdf52e541d9d28"), "isbn": "978-3-16-148999-9", "copies_sold": 720050 } { "_id": ObjectId("56e31ce076cdf52e541d9d29"), "isbn": "978-3-16-148999-9", "copies_sold": 1000 } 

Combinar ambas colecciones es solo cuestión de usar $ lookup de la siguiente manera:

 db.books.aggregate([{ $lookup: { from: "books_selling_data", localField: "isbn", foreignField: "isbn", as: "copies_sold" } }]) 

Después de esta agregación, la colección de books tendrá el siguiente aspecto:

 { "isbn": "978-3-16-148410-0", "title": "Some cool book", "author": "John Doe", "copies_sold": [ { "_id": ObjectId("56e31bcf76cdf52e541d9d26"), "isbn": "978-3-16-148410-0", "copies_sold": 12500 } ] } { "isbn": "978-3-16-148999-9", "title": "Another awesome book", "author": "Jane Roe", "copies_sold": [ { "_id": ObjectId("56e31ce076cdf52e541d9d28"), "isbn": "978-3-16-148999-9", "copies_sold": 720050 }, { "_id": ObjectId("56e31ce076cdf52e541d9d28"), "isbn": "978-3-16-148999-9", "copies_sold": 1000 } ] } 

Es importante tener en cuenta algunas cosas:

  1. La colección “de”, en este caso books_selling_data , no se puede fragmentar.
  2. El campo “como” será una matriz, como el ejemplo anterior.
  3. Las opciones “localField” y “foreignField” en la etapa $ lookup se tratarán como nulas para fines de coincidencia si no existen en sus respectivas colecciones (los $ lookup docs tienen un ejemplo perfecto al respecto).

Por lo tanto, como conclusión, si desea consolidar ambas colecciones, teniendo, en este caso, un campo plano de copia_de copias con el total de copias vendidas, tendrá que trabajar un poco más, probablemente utilizando una colección intermedia que, entonces, be $ a la colección final.

Si no hay una inserción masiva en mongodb, colocamos un bucle en todos los objetos en la small_collection e insertamos uno por uno en la big_collection :

 db.small_collection.find().forEach(function(obj){ db.big_collection.insert(obj) }); 

Ejemplo muy básico con $ búsqueda.

 db.getCollection('users').aggregate([ { $lookup: { from: "userinfo", localField: "userId", foreignField: "userId", as: "userInfoData" } }, { $lookup: { from: "userrole", localField: "userId", foreignField: "userId", as: "userRoleData" } }, { $unwind: { path: "$userInfoData", preserveNullAndEmptyArrays: true }}, { $unwind: { path: "$userRoleData", preserveNullAndEmptyArrays: true }} ]) 

Aquí se usa

  { $unwind: { path: "$userInfoData", preserveNullAndEmptyArrays: true }}, { $unwind: { path: "$userRoleData", preserveNullAndEmptyArrays: true }} 

En lugar de

 { $unwind:"$userRoleData"} { $unwind:"$userRoleData"} 

Como {$ unwind: “$ userRoleData”}, esto arrojará un resultado vacío o 0 si no se encuentra un registro coincidente con $ lookup.

use múltiples $ búsqueda para múltiples colecciones en agregación

consulta:

 db.getCollection('servicelocations').aggregate([ { $match: { serviceLocationId: { $in: ["36728"] } } }, { $lookup: { from: "orders", localField: "serviceLocationId", foreignField: "serviceLocationId", as: "orders" } }, { $lookup: { from: "timewindowtypes", localField: "timeWindow.timeWindowTypeId", foreignField: "timeWindowTypeId", as: "timeWindow" } }, { $lookup: { from: "servicetimetypes", localField: "serviceTimeTypeId", foreignField: "serviceTimeTypeId", as: "serviceTime" } }, { $unwind: "$orders" }, { $unwind: "$serviceTime" }, { $limit: 14 } ]) 

resultado:

 { "_id" : ObjectId("59c3ac4bb7799c90ebb3279b"), "serviceLocationId" : "36728", "regionId" : 1.0, "zoneId" : "DXBZONE1", "description" : "AL HALLAB REST EMIRATES MALL", "locationPriority" : 1.0, "accountTypeId" : 1.0, "locationType" : "SERVICELOCATION", "location" : { "makani" : "", "lat" : 25.119035, "lng" : 55.198694 }, "deliveryDays" : "MTWRFSU", "timeWindow" : [ { "_id" : ObjectId("59c3b0a3b7799c90ebb32cde"), "timeWindowTypeId" : "1", "Description" : "MORNING", "timeWindow" : { "openTime" : "06:00", "closeTime" : "08:00" }, "accountId" : 1.0 }, { "_id" : ObjectId("59c3b0a3b7799c90ebb32cdf"), "timeWindowTypeId" : "1", "Description" : "MORNING", "timeWindow" : { "openTime" : "09:00", "closeTime" : "10:00" }, "accountId" : 1.0 }, { "_id" : ObjectId("59c3b0a3b7799c90ebb32ce0"), "timeWindowTypeId" : "1", "Description" : "MORNING", "timeWindow" : { "openTime" : "10:30", "closeTime" : "11:30" }, "accountId" : 1.0 } ], "address1" : "", "address2" : "", "phone" : "", "city" : "", "county" : "", "state" : "", "country" : "", "zipcode" : "", "imageUrl" : "", "contact" : { "name" : "", "email" : "" }, "status" : "ACTIVE", "createdBy" : "", "updatedBy" : "", "updateDate" : "", "accountId" : 1.0, "serviceTimeTypeId" : "1", "orders" : [ { "_id" : ObjectId("59c3b291f251c77f15790f92"), "orderId" : "AQ18O1704264", "serviceLocationId" : "36728", "orderNo" : "AQ18O1704264", "orderDate" : "18-Sep-17", "description" : "AQ18O1704264", "serviceType" : "Delivery", "orderSource" : "Import", "takenBy" : "KARIM", "plannedDeliveryDate" : ISODate("2017-08-26T00:00:00.000Z"), "plannedDeliveryTime" : "", "actualDeliveryDate" : "", "actualDeliveryTime" : "", "deliveredBy" : "", "size1" : 296.0, "size2" : 3573.355, "size3" : 240.811, "jobPriority" : 1.0, "cancelReason" : "", "cancelDate" : "", "cancelBy" : "", "reasonCode" : "", "reasonText" : "", "status" : "", "lineItems" : [ { "ItemId" : "BNWB020", "size1" : 15.0, "size2" : 78.6, "size3" : 6.0 }, { "ItemId" : "BNWB021", "size1" : 20.0, "size2" : 252.0, "size3" : 11.538 }, { "ItemId" : "BNWB023", "size1" : 15.0, "size2" : 285.0, "size3" : 16.071 }, { "ItemId" : "CPMW112", "size1" : 3.0, "size2" : 25.38, "size3" : 1.731 }, { "ItemId" : "MMGW001", "size1" : 25.0, "size2" : 464.375, "size3" : 46.875 }, { "ItemId" : "MMNB218", "size1" : 50.0, "size2" : 920.0, "size3" : 60.0 }, { "ItemId" : "MMNB219", "size1" : 50.0, "size2" : 630.0, "size3" : 40.0 }, { "ItemId" : "MMNB220", "size1" : 50.0, "size2" : 416.0, "size3" : 28.846 }, { "ItemId" : "MMNB270", "size1" : 50.0, "size2" : 262.0, "size3" : 20.0 }, { "ItemId" : "MMNB302", "size1" : 15.0, "size2" : 195.0, "size3" : 6.0 }, { "ItemId" : "MMNB373", "size1" : 3.0, "size2" : 45.0, "size3" : 3.75 } ], "accountId" : 1.0 }, { "_id" : ObjectId("59c3b291f251c77f15790f9d"), "orderId" : "AQ137O1701240", "serviceLocationId" : "36728", "orderNo" : "AQ137O1701240", "orderDate" : "18-Sep-17", "description" : "AQ137O1701240", "serviceType" : "Delivery", "orderSource" : "Import", "takenBy" : "KARIM", "plannedDeliveryDate" : ISODate("2017-08-26T00:00:00.000Z"), "plannedDeliveryTime" : "", "actualDeliveryDate" : "", "actualDeliveryTime" : "", "deliveredBy" : "", "size1" : 28.0, "size2" : 520.11, "size3" : 52.5, "jobPriority" : 1.0, "cancelReason" : "", "cancelDate" : "", "cancelBy" : "", "reasonCode" : "", "reasonText" : "", "status" : "", "lineItems" : [ { "ItemId" : "MMGW001", "size1" : 25.0, "size2" : 464.38, "size3" : 46.875 }, { "ItemId" : "MMGW001-F1", "size1" : 3.0, "size2" : 55.73, "size3" : 5.625 } ], "accountId" : 1.0 }, { "_id" : ObjectId("59c3b291f251c77f15790fd8"), "orderId" : "AQ110O1705036", "serviceLocationId" : "36728", "orderNo" : "AQ110O1705036", "orderDate" : "18-Sep-17", "description" : "AQ110O1705036", "serviceType" : "Delivery", "orderSource" : "Import", "takenBy" : "KARIM", "plannedDeliveryDate" : ISODate("2017-08-26T00:00:00.000Z"), "plannedDeliveryTime" : "", "actualDeliveryDate" : "", "actualDeliveryTime" : "", "deliveredBy" : "", "size1" : 60.0, "size2" : 1046.0, "size3" : 68.0, "jobPriority" : 1.0, "cancelReason" : "", "cancelDate" : "", "cancelBy" : "", "reasonCode" : "", "reasonText" : "", "status" : "", "lineItems" : [ { "ItemId" : "MMNB218", "size1" : 50.0, "size2" : 920.0, "size3" : 60.0 }, { "ItemId" : "MMNB219", "size1" : 10.0, "size2" : 126.0, "size3" : 8.0 } ], "accountId" : 1.0 } ], "serviceTime" : { "_id" : ObjectId("59c3b07cb7799c90ebb32cdc"), "serviceTimeTypeId" : "1", "serviceTimeType" : "nohelper", "description" : "", "fixedTime" : 30.0, "variableTime" : 0.0, "accountId" : 1.0 } } 

Mongorestre tiene esta función de agregarse encima de lo que ya está en la base de datos, por lo que este comportamiento podría usarse para combinar dos colecciones:

  1. colección mongodump1
  2. collection2.rename (collection1)
  3. mongorestre

Todavía no lo intenté, pero podría funcionar más rápido que el enfoque de mapa / reducir.

Fragmento de código. Cortesía: varias publicaciones sobre el desbordamiento de la stack, incluida esta.

  db.cust.drop(); db.zip.drop(); db.cust.insert({cust_id:1, zip_id: 101}); db.cust.insert({cust_id:2, zip_id: 101}); db.cust.insert({cust_id:3, zip_id: 101}); db.cust.insert({cust_id:4, zip_id: 102}); db.cust.insert({cust_id:5, zip_id: 102}); db.zip.insert({zip_id:101, zip_cd:'AAA'}); db.zip.insert({zip_id:102, zip_cd:'BBB'}); db.zip.insert({zip_id:103, zip_cd:'CCC'}); mapCust = function() { var values = { cust_id: this.cust_id }; emit(this.zip_id, values); }; mapZip = function() { var values = { zip_cd: this.zip_cd }; emit(this.zip_id, values); }; reduceCustZip = function(k, values) { var result = {}; values.forEach(function(value) { var field; if ("cust_id" in value) { if (!("cust_ids" in result)) { result.cust_ids = []; } result.cust_ids.push(value); } else { for (field in value) { if (value.hasOwnProperty(field) ) { result[field] = value[field]; } }; } }); return result; }; db.cust_zip.drop(); db.cust.mapReduce(mapCust, reduceCustZip, {"out": {"reduce": "cust_zip"}}); db.zip.mapReduce(mapZip, reduceCustZip, {"out": {"reduce": "cust_zip"}}); db.cust_zip.find(); mapCZ = function() { var that = this; if ("cust_ids" in this.value) { this.value.cust_ids.forEach(function(value) { emit(value.cust_id, { zip_id: that._id, zip_cd: that.value.zip_cd }); }); } }; reduceCZ = function(k, values) { var result = {}; values.forEach(function(value) { var field; for (field in value) { if (value.hasOwnProperty(field)) { result[field] = value[field]; } } }); return result; }; db.cust_zip_joined.drop(); db.cust_zip.mapReduce(mapCZ, reduceCZ, {"out": "cust_zip_joined"}); db.cust_zip_joined.find().pretty(); var flattenMRCollection=function(dbName,collectionName) { var collection=db.getSiblingDB(dbName)[collectionName]; var i=0; var bulk=collection.initializeUnorderedBulkOp(); collection.find({ value: { $exists: true } }).addOption(16).forEach(function(result) { print((++i)); //collection.update({_id: result._id},result.value); bulk.find({_id: result._id}).replaceOne(result.value); if(i%1000==0) { print("Executing bulk..."); bulk.execute(); bulk=collection.initializeUnorderedBulkOp(); } }); bulk.execute(); }; flattenMRCollection("mydb","cust_zip_joined"); db.cust_zip_joined.find().pretty(); 

Sí puede: tome esta función de utilidad que he escrito hoy:

 function shangMergeCol() { tcol= db.getCollection(arguments[0]); for (var i=1; i 

Puede pasar a esta función cualquier cantidad de colecciones, la primera será la de destino. Todas las colecciones de descanso son fonts que se transferirán al objective.

Tienes que hacer eso en tu capa de aplicación. Si está utilizando un ORM, podría usar anotaciones (o algo similar) para extraer referencias que existen en otras colecciones. Solo he trabajado con Morphia , y la anotación @Reference la entidad a la que se hace referencia cuando me preguntan, por lo que puedo evitar hacerlo yo mismo en el código.