¿Cómo puedo convertir un número entero en su representación verbal?

¿Existe una biblioteca o una clase / función que pueda usar para convertir un número entero a su representación verbal?

Ejemplo de entrada:

4,567,788`

Ejemplo de salida:

Cuatro millones, Quinientos sesenta y siete mil setecientos ochenta y ocho

si usa el código que se encuentra en: convertir números en palabras C # y lo necesita para números decimales, aquí está cómo hacerlo:

public string DecimalToWords(decimal number) { if (number == 0) return "zero"; if (number < 0) return "minus " + DecimalToWords(Math.Abs(number)); string words = ""; int intPortion = (int)number; decimal fraction = (number - intPortion)*100; int decPortion = (int)fraction; words = NumericToWords(intPortion); if (decPortion > 0) { words += " and "; words += NumericToWords(decPortion); } return words; } 

Actualmente, la mejor y más robusta biblioteca para esto es definitivamente Humanizer . Es de origen abierto y está disponible como nuget:

 Console.WriteLine(4567788.ToWords()); // => four million five hundred and sixty-seven thousand seven hundred and eighty-eight 

También tiene una amplia gama de herramientas que resuelven los pequeños problemas que tiene cada aplicación con string s, enum s, DateTime s, TimeSpan s, etc., y admite muchos idiomas diferentes.

 Console.WriteLine(4567788.ToOrdinalWords().Underscore().Hyphenate().ApplyCase(LetterCasing.AllCaps)); // => FOUR-MILLION-FIVE-HUNDRED-AND-SIXTY-SEVEN-THOUSAND-SEVEN-HUNDRED-AND-EIGHTY-EIGHTH 

Versión completamente recursiva:

 private static string[] ones = { "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", }; private static string[] tens = { "zero", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety" }; private static string[] thous = { "hundred", "thousand", "million", "billion", "trillion", "quadrillion" }; public static string ToWords(decimal number) { if (number < 0) return "negative " + ToWords(Math.Abs(number)); int intPortion = (int)number; int decPortion = (int)((number - intPortion) * (decimal) 100); return string.Format("{0} dollars and {1} cents", ToWords(intPortion), ToWords(decPortion)); } private static string ToWords(int number, string appendScale = "") { string numString = ""; if (number < 100) { if (number < 20) numString = ones[number]; else { numString = tens[number / 10]; if ((number % 10) > 0) numString += "-" + ones[number % 10]; } } else { int pow = 0; string powStr = ""; if (number < 1000) // number is between 100 and 1000 { pow = 100; powStr = thous[0]; } else // find the scale of the number { int log = (int)Math.Log(number, 1000); pow = (int)Math.Pow(1000, log); powStr = thous[log]; } numString = string.Format("{0} {1}", ToWords(number / pow, powStr), ToWords(number % pow)).Trim(); } return string.Format("{0} {1}", numString, appendScale).Trim(); } 

La stream funciona hasta los cuatrillones (de corta escala). Se puede agregar soporte adicional (para números más grandes, o para la escala larga ) simplemente cambiando la variable thous .

Tal vez, innecesariamente complejo (el caso especial de cientos me molesta un poco), dado que la modificación de la versión no recursiva también es bastante simple.

Aquí está la versión en español:

  public static string numeroALetras(int number) { if (number == 0) return "cero"; if (number < 0) return "menos " + numeroALetras(Math.Abs(number)); string words = ""; if ((number / 1000000) > 0) { words += numeroALetras(number / 1000000) + " millón "; number %= 1000000; } if ((number / 1000) > 0) { words += (number / 1000) == 1? "mil ": numeroALetras(number / 1000) + " mil "; number %= 1000; } if ((number / 100) == 1) { if (number == 100) words += "cien"; else words += (number / 100)> 1? numeroALetras(number / 100) + " ciento ":"ciento "; number %= 100; } if ((number / 100) > 1) { var hundredMap = new[] {"","", "dosc", "tresc", "cuatroc", "quin", "seisc", "sietec", "ochoc", "novec" }; if (number > 199) words += hundredMap[number/100] + "ientos "; else { words += numeroALetras(number / 100) + " ientos "; } number %= 100; } if (number > 0) { if (words != "") words += " "; var unitsMap = new[] { "cero", "uno", "dos", "tres", "cuatro", "cinco", "seis", "siete", "ocho", "nueve", "diez", "once", "doce", "trece", "catorce", "quince", "dieciseis", "diecisiete", "dieciocho", "diecinueve", "veinte" }; var tensMap = new[] { "cero", "diez", "veinti", "treinta", "cuarenta", "cincuenta", "sesenta", "setenta", "ochenta", "noventa" }; if (number < 21) words += unitsMap[number]; else { words += tensMap[number / 10]; if ((number % 10) > 0) words += ((number % 10)>2?" y ": "") + unitsMap[number % 10]; } } return words; } 
 Imports System.Text Public Class NumberWriter Public Shared Function Parse(ByVal Number As String) As String If Not AreNumbers(Number) Then Return "" Dim TempQueue As New Queue(Of String) For Each ItemA As Char In Number.Replace(",", "").Reverse TempQueue.Enqueue(ItemA) Next Dim Blocks As New List(Of String) Dim BlockEmpty As New List(Of Boolean) Do Dim TempBlock As New StringBuilder(3) TempBlock.Append(TempQueue.Dequeue) If TempQueue.Count > 0 Then TempBlock.Append(TempQueue.Dequeue) If TempQueue.Count > 0 Then TempBlock.Append(TempQueue.Dequeue) End If End If Blocks.Add(StrReverse(TempBlock.ToString)) BlockEmpty.Add(TempBlock.ToString = "000") If TempQueue.Count < 1 Then Exit Do Loop Dim ResultStack As New Stack(Of String) For int1 As Integer = 0 To Blocks.Count - 1 ResultStack.Push(ReadBlock(Blocks(int1)) & If(Not int1 = 0, If(Not BlockEmpty(int1), " " & CapitalizeWord(GetPlaceValueSet(int1)) & If(BlockEmpty(int1 - 1), "", ", "), ""), "")) Next Dim Result1 As String = "" Do Until ResultStack.Count < 1 Result1 &= ResultStack.Pop Loop Return RemoveGrammarErrors(Result1) End Function Private Shared Function RemoveGrammarErrors(ByVal Str As String) As String Dim tstr As String = Str tstr.Replace(" ", " ") tstr.Replace(" , ", ", ") Return tstr End Function Private Shared Function AreNumbers(ByVal Str1 As String) As Boolean Dim Numbers() As String = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ","} For Each ItemA As Char In Str1 Dim IsN As Boolean = False For Each ItemB As String In Numbers If ItemA = ItemB Then IsN = True Next If Not IsN Then Return False End If Next Return True End Function Private Shared Function ReadBlock(ByVal Block As String) Select Case Block.Length Case 1 Return ReadSingleDigit(Block) Case 2 Return ReadTwoDigits(Block) Case 3 Return ReadThreeDigits(Block) Case Else Throw New Exception End Select End Function Private Shared Function ReadThreeDigits(ByVal Digits As String) If Digits.Length > 3 Then Throw New ArgumentException("There are too many digits.") Dim Result As String = "" If Not Digits(0) = "0" Then Result &= ReadSingleDigit(Digits(0)) & " Hundred " End If Result &= ReadTwoDigits(Digits.Substring(1)) Return Result End Function Private Shared Function ReadTwoDigits(ByVal Digits As String) If Digits.Length > 2 Then Throw New ArgumentException("There are too many digits.") Select Case Digits(0) Case "0" Return ReadSingleDigit(Digits(1)) Case "1" Return ReadTeenNumber(Digits) Case Else Return ReadFirstInNumberPair(Digits(0)) & If(Digits(1) = "0", "", "-" & ReadSingleDigit(Digits(1))) End Select End Function Private Shared Function ReadSingleDigit(ByVal Digit As String) As String If Not Digit.Length = 1 Then Throw New ArgumentException("There must be only one digit and it must be more than zero.") Select Case Digit Case "0" Return "" Case "1" Return "One" Case "2" Return "Two" Case "3" Return "Three" Case "4" Return "Four" Case "5" Return "Five" Case "6" Return "Six" Case "7" Return "Seven" Case "8" Return "Eight" Case "9" Return "Nine" Case Else Throw New Exception() End Select End Function Private Shared Function ReadTeenNumber(ByVal Num As String) As String Select Case Num Case "11" Return "Eleven" Case "12" Return "Twelve" Case "13" Return "Thirteen" Case "14" Return "Fourteen" Case "15" Return "Fifteen" Case "16" Return "Sixteen" Case "17" Return "Seventeen" Case "18" Return "Eighteen" Case "19" Return "Nineteen" Case Else Throw New Exception() End Select End Function Private Shared Function ReadFirstInNumberPair(ByVal Num As String) As String If Not (Num > 1 OrElse Num < 10) Then Throw New ArgumentException("Number must be more than 1 and less than 10") Select Case Num Case "2" Return "Twenty" Case "3" Return "Thirty" Case "4" Return "Fourty" Case "5" Return "Fifty" Case "6" Return "Sixty" Case "7" Return "Seventy" Case "8" Return "Eighty" Case "9" Return "Ninety" Case Else Throw New Exception() End Select End Function Private Shared Function CapitalizeWord(ByVal Word As String) As String Return Word.Substring(0, 1).ToUpper & Word.Substring(1) End Function Private Shared Function GetPlaceValueSet(ByVal Num As Byte) As String Select Case Num Case 0 Return "" 'Hundreds Case 1 Return "Thousand" Case 2 Return "Million" Case 3 Return "Billion" Case 4 Return "Trillion" Case 5 Return "Quadrillion" Case 6 Return "Quintillion" Case 7 Return "Sextillion" Case 8 Return "Septillion" Case 9 Return "Octillion" Case 10 Return "Nonillion" Case 11 Return "octillion" Case 12 Return "nonillion" Case 13 Return "decillion" Case 14 Return "undecillion" Case 15 Return "dodecillion," Case 16 Return "tredecillion" Case 17 Return "quattuordecillion" Case 18 Return "quindecillion" Case 19 Return "sexdecillion" Case 20 Return "septendecillion" Case 21 Return "octodecillion" Case 22 Return "novemdecillion" Case 23 Return "vigintillion" Case 24 Return "unvigintillion" Case 25 Return "dovigintillion" Case 26 Return "trevigintillion" Case 27 Return "quattuorvigintillion" Case 28 Return "quinvigintillion" Case 29 Return "sexvigintillion" Case 30 Return "septenvigintillion" Case 31 Return "octovigintillion" Case 32 Return "novemvigintillion" Case 33 Return "trigintillion" Case 34 Return "untrigintillion" Case 35 Return "dotrigintillion" Case 36 Return "tretrigintillion" Case 37 Return "quattuortrigintillion" Case 38 Return "quintrigintillion" Case 39 Return "sextrigintillion" Case 40 Return "septentrigintillion" Case 41 Return "octotrigintillion" Case Else Throw New Exception End Select End Function End Class 

Lo siento, está en VB.NET, pero funciona por completo. Es una forma. Número a Verbal. Maneja números de hasta 123 caracteres de largo, creo.

Aquí está mi solución, espero que te ayude

 namespace ConsoleApplication3 { class Program { static void Main(string[] args) { string s = Console.ReadLine(); ConvertMyword(int.Parse(s)); Console.Read(); } static void ConvertMyword(int number) { int flag = 0; int lflag = 0; string words = String.Empty; string[] places = { "ones", "ten", "hundred", "thousand", "ten thousand", "lacs","tenlacs","crore","tencrore" }; string rawnumber = number.ToString(); char[] a = rawnumber.ToCharArray(); Array.Reverse(a); for (int i = a.Length - 1; i >= 0; i--) { if (i % 2 == 0 && i > 2) { if (int.Parse(a[i].ToString()) > 1) { if (int.Parse(a[i - 1].ToString()) == 0) { words = words + getNumberStringty(int.Parse(a[i].ToString())) + " " + places[i - 1] + " "; } else { words = words + getNumberStringty(int.Parse(a[i].ToString())) + " "; } } else if (int.Parse(a[i].ToString()) == 1) { if (int.Parse(a[i - 1].ToString())== 0) { words = words +"Ten" + " "; } else { words = words + getNumberStringteen(int.Parse(a[i - 1].ToString())) + " "; } flag = 1; } } else { if (i == 1 || i == 0) { if (int.Parse(a[i].ToString()) > 1) { words = words + getNumberStringty(int.Parse(a[i].ToString())) + " " + getNumberString(int.Parse(a[0].ToString())) + " "; break; } else if (int.Parse(a[i].ToString()) == 1) { if (int.Parse(a[i - 1].ToString()) == 0) { words = words + "Ten" + " "; } else { words = words + getNumberStringteen(int.Parse(a[i - 1].ToString())) + " "; } break; } else if (int.Parse(a[i - 1].ToString()) != 0) { words = words + getNumberString(int.Parse(a[i - 1].ToString())) + " "; break; } else { break; } } else { if (flag == 0) { for(int l=i;l>=0;l--) { if (int.Parse(a[l].ToString())!=0) { lflag = 1; } } if (lflag == 1 && int.Parse(a[i].ToString())!=0) { words = words + getNumberString(int.Parse(a[i].ToString())) + " " + places[i] + " "; lflag = 0; } else if(lflag == 0) { // words = words + getNumberString(int.Parse(a[i].ToString())) + " " + places[i] + " "; lflag = 0; break; } } else { words = words + " " + places[i] + " "; flag = 0; } } } } Console.WriteLine(words); } static string getNumberString(int num) { string Word = String.Empty; switch (num) { case 1: Word = "one"; break; case 2: Word = "two"; break; case 3: Word = "three"; break; case 4: Word = "four"; break; case 5: Word = "five"; break; case 6: Word = "six"; break; case 7: Word = "seven"; break; case 8: Word = "eight"; break; case 9: Word = "nine"; break; } return Word; } static string getNumberStringty(int num) { string Word = String.Empty; switch (num) { case 2: Word = "twenty"; break; case 3: Word = "thirty"; break; case 4: Word = "fourty"; break; case 5: Word = "fifty"; break; case 6: Word = "sixty"; break; case 7: Word = "seventy"; break; case 8: Word = "eighty"; break; case 9: Word = "ninty"; break; } return Word; } static string getNumberStringteen(int num) { string Word = String.Empty; switch (num) { case 1: Word = "eleven"; break; case 2: Word = "tewlve"; break; case 3: Word = "thirteen"; break; case 4: Word = "fourteen"; break; case 5: Word = "fifteen"; break; case 6: Word = "sixteen"; break; case 7: Word = "seventeen"; break; case 8: Word = "eighteen"; break; case 9: Word = "ninteen"; break; } return Word; } } } 

http://www.exchangecore.com/blog/convert-number-words-c-sharp-console-application/ tiene algo de script C # que parece manejar números muy grandes y decimales muy pequeños.

 using System; using System.Collections.Generic; using System.Text; namespace NumWords { class Program { // PROGRAM HANDLES NEGATIVE AND POSITIVE DOUBLES static String NumWordsWrapper(double n) { string words = ""; double intPart; double decPart = 0; if (n == 0) return "zero"; try { string[] splitter = n.ToString().Split('.'); intPart = double.Parse(splitter[0]); decPart = double.Parse(splitter[1]); } catch { intPart = n; } words = NumWords(intPart); if (decPart > 0) { if (words != "") words += " and "; int counter = decPart.ToString().Length; switch (counter) { case 1: words += NumWords(decPart) + " tenths"; break; case 2: words += NumWords(decPart) + " hundredths"; break; case 3: words += NumWords(decPart) + " thousandths"; break; case 4: words += NumWords(decPart) + " ten-thousandths"; break; case 5: words += NumWords(decPart) + " hundred-thousandths"; break; case 6: words += NumWords(decPart) + " millionths"; break; case 7: words += NumWords(decPart) + " ten-millionths"; break; } } return words; } static String NumWords(double n) //converts double to words { string[] numbersArr = new string[] { "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen" }; string[] tensArr = new string[] { "twenty", "thirty", "fourty", "fifty", "sixty", "seventy", "eighty", "ninty" }; string[] suffixesArr = new string[] { "thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion", "undecillion", "duodecillion", "tredecillion", "Quattuordecillion", "Quindecillion", "Sexdecillion", "Septdecillion", "Octodecillion", "Novemdecillion", "Vigintillion" }; string words = ""; bool tens = false; if (n < 0) { words += "negative "; n *= -1; } int power = (suffixesArr.Length + 1) * 3; while (power > 3) { double pow = Math.Pow(10, power); if (n >= pow) { if (n % pow > 0) { words += NumWords(Math.Floor(n / pow)) + " " + suffixesArr[(power / 3) - 1] + ", "; } else if (n % pow == 0) { words += NumWords(Math.Floor(n / pow)) + " " + suffixesArr[(power / 3) - 1]; } n %= pow; } power -= 3; } if (n >= 1000) { if (n % 1000 > 0) words += NumWords(Math.Floor(n / 1000)) + " thousand, "; else words += NumWords(Math.Floor(n / 1000)) + " thousand"; n %= 1000; } if (0 <= n && n <= 999) { if ((int)n / 100 > 0) { words += NumWords(Math.Floor(n / 100)) + " hundred"; n %= 100; } if ((int)n / 10 > 1) { if (words != "") words += " "; words += tensArr[(int)n / 10 - 2]; tens = true; n %= 10; } if (n < 20 && n > 0) { if (words != "" && tens == false) words += " "; words += (tens ? "-" + numbersArr[(int)n - 1] : numbersArr[(int)n - 1]); n -= Math.Floor(n); } } return words; } static void Main(string[] args) { Console.Write("Enter a number to convert to words: "); Double n = Double.Parse(Console.ReadLine()); Console.WriteLine("{0}", NumWordsWrapper(n)); } } } 

EDITAR: trajo el código de la publicación del blog

En caso de que alguien quiera una versión de JavaScript

 Number.prototype.numberToWords = function () { var unitsMap = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"]; var tensMap = ["zero", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]; var num = this.valueOf(); if (Math.round(num == 0)) { return "zero"; } if (num < 0) { var positivenum = Math.abs(num); return "minus " + Number(positivenum).numberToWords(); } var words = ""; if (Math.floor(num / 1000000) > 0) { words += Math.floor(num / 1000000).numberToWords() + " million "; num = Math.floor(num % 1000000); } if (Math.floor(num / 1000) > 0) { words += Math.floor(num / 1000).numberToWords() + " thousand "; num = Math.floor(num % 1000); } if (Math.floor(num / 100) > 0) { words += Math.floor(num / 100).numberToWords() + " hundred "; num = Math.floor(num % 100); } if (Math.floor(num > 0)) { if (words != "") { words += "and "; } if (num < 20) { words += unitsMap[num]; } else { words += tensMap[Math.floor(num / 10)]; if ((num % 10) > 0) { words += "-" + unitsMap[Math.round(num % 10)]; } } } return words.trim(); } 

Me encargaron crear una API WEB que convierta números en palabras usando C #.

Puede ser un número entero o con puntos decimales en 48 horas.

La llamada procederá de una aplicación de front-end que utiliza el método Ajax Post y devuelve el resultado convertido en la página web.

He compartido públicamente ese proyecto en GitHub para referencia: https://github.com/marvinglennlacuna/NumbersToWordsConverter.Api

Con la siguiente implementación técnica en colocado:

  1. MVC estructurado
  2. Controlador API
  3. Servicio
  4. Modelo
  5. Manejo de errores
  6. Pruebas unitarias usando MSTest
  7. Cobertura del código: 98%
  8. Jquery

Y con documentación técnica sobre lo siguiente también:

  1. Propósito
  2. Requisitos previos
  3. Requerimientos Funcionales
  4. Diagtwig de proceso y salida

** Resultado a través de la página web (US-001) **

US-001 Convertir números en palabras a través del proceso de página web

enter image description here

US-001 Convertir números en palabras a través de la página web de salida

enter image description here

Resultado vía cartero (US-002)

US-002 – Convertir números en palabras mediante el proceso del cartero

enter image description here

US-002 – Convertir números en palabras a través de la salida del cartero

enter image description here

Creo que vale la pena compartir una solución de trabajo en caso de que la necesite como referencia en una entrevista / prueba de código / escuela o solo por diversión.

Saludos, Marvin

Esta clase convierte perfectamente su flotador o doble (hasta 2 de precisión). Simplemente copie y pegue su IDE y vea el resultado.

 class ConversionClass { private static Dictionary InitialNumbers = new Dictionary(); private static Dictionary MultipleOfTen = new Dictionary(); private static Dictionary MultipleOfHundered = new Dictionary(); private static void InitializeStatic() { //InitialNumbers.Add(0, "zero"); InitialNumbers.Add(1, "one"); InitialNumbers.Add(2, "two"); InitialNumbers.Add(3, "three"); InitialNumbers.Add(4, "four"); InitialNumbers.Add(5, "five"); InitialNumbers.Add(6, "six"); InitialNumbers.Add(7, "seven"); InitialNumbers.Add(8, "eight"); InitialNumbers.Add(9, "nine"); InitialNumbers.Add(10, "ten"); InitialNumbers.Add(11, "eleven"); InitialNumbers.Add(12, "tweleve"); InitialNumbers.Add(13, "thirteen"); InitialNumbers.Add(14, "fourteen"); InitialNumbers.Add(15, "fifteen"); InitialNumbers.Add(16, "sixteen"); InitialNumbers.Add(17, "seventeen"); InitialNumbers.Add(18, "eighteen"); InitialNumbers.Add(19, "nineteen"); MultipleOfTen.Add(1, "ten"); MultipleOfTen.Add(2, "twenty"); MultipleOfTen.Add(3, "thirty"); MultipleOfTen.Add(4, "fourty"); MultipleOfTen.Add(5, "fifty"); MultipleOfTen.Add(6, "sixty"); MultipleOfTen.Add(7, "seventy"); MultipleOfTen.Add(8, "eighty"); MultipleOfTen.Add(9, "ninety"); MultipleOfHundered.Add(2, "hundred"); // 100 MultipleOfHundered.Add(3, "thousand"); // 1 000 MultipleOfHundered.Add(4, "thousand"); // 10 000 MultipleOfHundered.Add(5, "thousand"); // 100 000 MultipleOfHundered.Add(6, "million"); // 1 000 000 MultipleOfHundered.Add(7, "million"); // 100 000 000 MultipleOfHundered.Add(8, "million"); // 1 000 000 000 MultipleOfHundered.Add(9, "billion"); // 1 000 000 000 000 } public static void Main() { InitializeStatic(); Console.WriteLine("Enter number :"); var userInput = Console.ReadLine(); double userValue ; if (double.TryParse(userInput, out userValue)) // userValue = 193524019.50 { int decimalPortion = (int)userValue; //var fractionPortion = Math.Ceiling(((userValue < 1.0) ? userValue : (userValue % Math.Floor(userValue))) * 100); int fractionPortion = (int)(userValue * 100) - ((int)userValue * 100); int digit; int power; StringBuilder numberInText = new StringBuilder(); while (decimalPortion > 0) { GetDigitAndPower(decimalPortion, out digit, out power); numberInText.Append(ConvertToText(ref decimalPortion, ref digit, ref power)); if (decimalPortion > 0) { decimalPortion = GetReminder(decimalPortion, digit, power); } } numberInText.Append(" point "); while (fractionPortion > 0) { GetDigitAndPower(fractionPortion, out digit, out power); numberInText.Append(ConvertToText(ref fractionPortion, ref digit, ref power)); if (fractionPortion > 0) { fractionPortion = GetReminder(fractionPortion, digit, power); } } Console.WriteLine(numberInText.ToString()); } Console.ReadKey(); } private static int GetReminder(int orgValue, int digit, int power) { int returningValue = orgValue - (digit * (int)Math.Pow(10, power)); return returningValue; } private static void GetDigitAndPower(int originalValue, out int digit, out int power) { for (power = 0, digit = 0; power < 10; power++) { var divisionFactor = (int)Math.Pow(10, power); int operationalValue = (originalValue / divisionFactor); if (operationalValue <= 0) { power = power - 1; digit = (int)(originalValue / Math.Pow(10, power)); break; } } } private static string ConvertToText(ref int orgValue, ref int digit, ref int power) { string numberToText = string.Empty; if (power < 2) { if (InitialNumbers.ContainsKey(orgValue)) { //This is for number 1 to 19 numberToText = InitialNumbers[orgValue]; orgValue = 0; } else if (MultipleOfTen.ContainsKey(digit)) { //This is for multiple of 10 (20,30,..90) numberToText = MultipleOfTen[digit]; } } else { if (power < 4) { numberToText = string.Format("{0} {1}", InitialNumbers[digit], MultipleOfHundered[power]); } else { StringBuilder sb = new StringBuilder(); int multiplicationFactor = power / 3; int innerOrgValue = (int) (orgValue / Math.Pow(10, (multiplicationFactor * 3))); digit = innerOrgValue; var multiple = MultipleOfHundered[power]; power = power - ((int)Math.Ceiling(Math.Log10(innerOrgValue)) - 1); int innerPower = 0; int innerDigit = 0; while (innerOrgValue > 0) { GetDigitAndPower(innerOrgValue, out innerDigit, out innerPower); var text = ConvertToText(ref innerOrgValue, ref innerDigit, ref innerPower); sb.Append(text); sb.Append(" "); if (innerOrgValue > 0) { innerOrgValue = GetReminder(innerOrgValue, innerDigit, innerPower); } } sb.Append(multiple); numberToText = sb.ToString(); } } return numberToText + " "; } } 

Aunque esta es una pregunta muy antigua, he implementado esta funcionalidad con un enfoque más detallado

 public static class NumberToWord { private static readonly Dictionary MyDictionary = new Dictionary(); static NumberToWord() { MyDictionary.Add(1000000000000000, "quadrillion"); MyDictionary.Add(1000000000000, "trillion"); MyDictionary.Add(1000000000, "billion"); MyDictionary.Add(1000000, "million"); MyDictionary.Add(1000, "thousand"); MyDictionary.Add(100, "hundread"); MyDictionary.Add(90, "ninety"); MyDictionary.Add(80, "eighty"); MyDictionary.Add(70, "seventy"); MyDictionary.Add(60, "sixty"); MyDictionary.Add(50, "fifty"); MyDictionary.Add(40, "fourty"); MyDictionary.Add(30, "thirty"); MyDictionary.Add(20, "twenty"); MyDictionary.Add(19, "nineteen"); MyDictionary.Add(18, "eighteen"); MyDictionary.Add(17, "seventeen"); MyDictionary.Add(16, "sixteen"); MyDictionary.Add(15, "fifteen"); MyDictionary.Add(14, "fourteen"); MyDictionary.Add(13, "thirteen"); MyDictionary.Add(12, "twelve"); MyDictionary.Add(11, "eleven"); MyDictionary.Add(10, "ten"); MyDictionary.Add(9, "nine"); MyDictionary.Add(8, "eight"); MyDictionary.Add(7, "seven"); MyDictionary.Add(6, "six"); MyDictionary.Add(5, "five"); MyDictionary.Add(4, "four"); MyDictionary.Add(3, "three"); MyDictionary.Add(2, "two"); MyDictionary.Add(1, "one"); MyDictionary.Add(0, "zero"); } ///  /// To the verbal. ///  /// The value. ///  public static string ToVerbal(this int value) { return ToVerbal((long) value); } ///  /// To the verbal. ///  /// The value. ///  public static string ToVerbal(this long value) { if (value == 0) return MyDictionary[value]; if (value < 0) return $" negative {ToVerbal(Math.Abs(value))}"; var builder = new StringBuilder(); for (var i = 1000000000000000; i >= 1000; i = i/1000) value = ConstructWord(value, builder, i); value = ConstructWord(value, builder, 100); for (var i = 90; i >= 20; i = i - 10) value = ConstructWordForTwoDigit(value, builder, i); if (MyDictionary.ContainsKey(value)) builder.AppendFormat("{0}" + MyDictionary[value], builder.Length > 0 ? " " : string.Empty); return builder.ToString(); } private static long ConstructWord(long value, StringBuilder builder, long key) { if (value >= key) { var unit = (int) (value/key); value -= unit*key; builder.AppendFormat(" {0} {1} " + MyDictionary[key], builder.Length > 0 ? ", " : string.Empty, ToVerbal(unit)); } return value; } private static long ConstructWordForTwoDigit(long value, StringBuilder builder, long key) { if (value >= key) { value -= key; builder.AppendFormat(" {0} " + MyDictionary[key], builder.Length > 0 ? " " : string.Empty); } return value; } } 

FYI: tengo interpolación de cadenas de usuario que solo está disponible en 4.6.1

Solución que toma menos código.

La parte más importante es solo líneas de pareja:

 static Func remainder = t => t > 0 ? " " + ToEN(t) : ""; public static string ToEN(this long val, double d = 20, long th = 20) { switch ((long)d) { case 20: return val >= d ? ToEN(val, 1e2) : en[val]; case 100: return val >= d ? ToEN(val, 1e3, 100) : en[val / 10 * 10] + remainder(val % 10); default: return val >= d ? ToEN(val, d * 1e3,(long)d) : ToEN(val / th) + " " + en[th] + remainder(val % th); } } 

El código completo está disponible aquí https://dotnetfiddle.net/wjr4hF

El siguiente código de la aplicación de la consola C # dará a accept un valor monetario en números de hasta 2 decimales y lo imprimirá en inglés. Puede usarlo como referencia para lograr sus resultados.

  namespace ConsoleApplication2 { using System; using System.Collections.Generic; using System.Linq; using System.Text.RegularExpressions; class Program { static void Main(string[] args) { bool repeat = true; while (repeat) { string inputMonetaryValueInNumberic = string.Empty; string centPart = string.Empty; string dollarPart = string.Empty; Console.Write("\nEnter the monetary value : "); inputMonetaryValueInNumberic = Console.ReadLine(); inputMonetaryValueInNumberic = inputMonetaryValueInNumberic.TrimStart('0'); if (ValidateInput(inputMonetaryValueInNumberic)) { if (inputMonetaryValueInNumberic.Contains('.')) { centPart = ProcessCents(inputMonetaryValueInNumberic.Substring(inputMonetaryValueInNumberic.IndexOf(".") + 1)); dollarPart = ProcessDollar(inputMonetaryValueInNumberic.Substring(0, inputMonetaryValueInNumberic.IndexOf("."))); } else { dollarPart = ProcessDollar(inputMonetaryValueInNumberic); } centPart = string.IsNullOrWhiteSpace(centPart) ? string.Empty : " and " + centPart; Console.WriteLine(string.Format("\n\n{0}{1}", dollarPart, centPart)); } else { Console.WriteLine("Invalid Input.."); } Console.WriteLine("\n\nPress any key to continue or Escape of close : "); var loop = Console.ReadKey(); repeat = !loop.Key.ToString().Contains("Escape"); Console.Clear(); } } private static string ProcessCents(string cents) { string english = string.Empty; string dig3 = Process3Digit(cents); if (!string.IsNullOrWhiteSpace(dig3)) { dig3 = string.Format("{0} {1}", dig3, GetSections(0)); } english = dig3 + english; return english; } private static string ProcessDollar(string dollar) { string english = string.Empty; foreach (var item in Get3DigitList(dollar)) { string dig3 = Process3Digit(item.Value); if (!string.IsNullOrWhiteSpace(dig3)) { dig3 = string.Format("{0} {1}", dig3, GetSections(item.Key)); } english = dig3 + english; } return english; } private static string Process3Digit(string digit3) { string result = string.Empty; if (Convert.ToInt32(digit3) != 0) { int place = 0; Stack monetaryValue = new Stack(); for (int i = digit3.Length - 1; i >= 0; i--) { place += 1; string stringValue = string.Empty; switch (place) { case 1: stringValue = GetOnes(digit3[i].ToString()); break; case 2: int tens = Convert.ToInt32(digit3[i]); if (tens == 1) { if (monetaryValue.Count > 0) { monetaryValue.Pop(); } stringValue = GetTens((digit3[i].ToString() + digit3[i + 1].ToString())); } else { stringValue = GetTens(digit3[i].ToString()); } break; case 3: stringValue = GetOnes(digit3[i].ToString()); if (!string.IsNullOrWhiteSpace(stringValue)) { string postFixWith = " Hundred"; if (monetaryValue.Count > 0) { postFixWith = postFixWith + " And"; } stringValue += postFixWith; } break; } if (!string.IsNullOrWhiteSpace(stringValue)) monetaryValue.Push(stringValue); } while (monetaryValue.Count > 0) { result += " " + monetaryValue.Pop().ToString().Trim(); } } return result; } private static Dictionary Get3DigitList(string monetaryValueInNumberic) { Dictionary hundredsStack = new Dictionary(); int counter = 0; while (monetaryValueInNumberic.Length >= 3) { string digit3 = monetaryValueInNumberic.Substring(monetaryValueInNumberic.Length - 3, 3); monetaryValueInNumberic = monetaryValueInNumberic.Substring(0, monetaryValueInNumberic.Length - 3); hundredsStack.Add(++counter, digit3); } if (monetaryValueInNumberic.Length != 0) hundredsStack.Add(++counter, monetaryValueInNumberic); return hundredsStack; } private static string GetTens(string tensPlaceValue) { string englishEquvalent = string.Empty; int value = Convert.ToInt32(tensPlaceValue); Dictionary tens = new Dictionary(); tens.Add(2, "Twenty"); tens.Add(3, "Thirty"); tens.Add(4, "Forty"); tens.Add(5, "Fifty"); tens.Add(6, "Sixty"); tens.Add(7, "Seventy"); tens.Add(8, "Eighty"); tens.Add(9, "Ninty"); tens.Add(10, "Ten"); tens.Add(11, "Eleven"); tens.Add(12, "Twelve"); tens.Add(13, "Thrteen"); tens.Add(14, "Fourteen"); tens.Add(15, "Fifteen"); tens.Add(16, "Sixteen"); tens.Add(17, "Seventeen"); tens.Add(18, "Eighteen"); tens.Add(19, "Ninteen"); if (tens.ContainsKey(value)) { englishEquvalent = tens[value]; } return englishEquvalent; } private static string GetOnes(string onesPlaceValue) { int value = Convert.ToInt32(onesPlaceValue); string englishEquvalent = string.Empty; Dictionary ones = new Dictionary(); ones.Add(1, " One"); ones.Add(2, " Two"); ones.Add(3, " Three"); ones.Add(4, " Four"); ones.Add(5, " Five"); ones.Add(6, " Six"); ones.Add(7, " Seven"); ones.Add(8, " Eight"); ones.Add(9, " Nine"); if (ones.ContainsKey(value)) { englishEquvalent = ones[value]; } return englishEquvalent; } private static string GetSections(int section) { string sectionName = string.Empty; switch (section) { case 0: sectionName = "Cents"; break; case 1: sectionName = "Dollars"; break; case 2: sectionName = "Thousand"; break; case 3: sectionName = "Million"; break; case 4: sectionName = "Billion"; break; case 5: sectionName = "Trillion"; break; case 6: sectionName = "Zillion"; break; } return sectionName; } private static bool ValidateInput(string input) { return Regex.IsMatch(input, "[0-9]{1,18}(\\.[0-9]{1,2})?")) } } } 

Realmente necesitaba esto para una aplicación en la que estoy trabajando, pero no estaba contento con ninguna de las soluciones aquí. Para su información, esta solución aprovecha el soporte de C # 7.0 para funciones locales. También utilicé el nuevo separador de dígitos para hacer que los números más grandes sean más legibles.

 public static class NumberExtensions { private const string negativeWord = "negative"; private static readonly Dictionary _wordMap = new Dictionary { [1_000_000_000_000_000_000] = "quintillion", [1_000_000_000_000_000] = "quadrillion", [1_000_000_000_000] = "trillion", [1_000_000_000] = "billion", [1_000_000] = "million", [1_000] = "thousand", [100] = "hundred", [90] = "ninety", [80] = "eighty", [70] = "seventy", [60] = "sixty", [50] = "fifty", [40] = "forty", [30] = "thirty", [20] = "twenty", [19] = "nineteen", [18] = "eighteen", [17] = "seventeen", [16] = "sixteen", [15] = "fifteen", [14] = "fourteen", [13] = "thirteen", [12] = "twelve", [11] = "eleven", [10] = "ten", [9] = "nine", [8] = "eight", [7] = "seven", [6] = "six", [5] = "five", [4] = "four", [3] = "three", [2] = "two", [1] = "one", [0] = "zero" }; public static string ToWords(this short num) { var words = ToWords((ulong)Math.Abs(num)); return num < 0 ? $"{negativeWord} {words}" : words; } public static string ToWords(this ushort num) { return ToWords((ulong)num); } public static string ToWords(this int num) { var words = ToWords((ulong)Math.Abs(num)); return num < 0 ? $"{negativeWord} {words}" : words; } public static string ToWords(this uint num) { return ToWords((ulong)num); } public static string ToWords(this long num) { var words = ToWords((ulong)Math.Abs(num)); return num < 0 ? $"{negativeWord} {words}" : words; } public static string ToWords(this ulong num) { var sb = new StringBuilder(); var delimiter = String.Empty; void AppendWords(ulong dividend) { void AppendDelimitedWord(ulong key) { sb.Append(delimiter); sb.Append(_wordMap[key]); delimiter = 20 <= key && key < 100 ? "-" : " "; } if (_wordMap.ContainsKey(dividend)) { AppendDelimitedWord(dividend); } else { var divisor = _wordMap.First(m => m.Key <= dividend).Key; var quotient = dividend / divisor; var remainder = dividend % divisor; if (quotient > 0 && divisor >= 100) { AppendWords(quotient); } AppendDelimitedWord(divisor); if (remainder > 0) { AppendWords(remainder); } } } AppendWords(num); return sb.ToString(); } } 

The meat is in the last ToWords overload.